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1
MACHINE-LEARNING BASED TAP
DETECTION

BACKGROUND

As electronic devices, such as laptops, tablets, or smart-
phones, become increasingly sophisticated, new and interest-
ing approaches have arisen for enabling users to interact with
such devices. For example, electronic devices have tradition-
ally employed mechanical switches, such as power on/off
buttons, volume buttons, alphanumeric keys, navigational
keys, among others, for enabling users to provide input to the
electronic devices. Many modern electronic devices now
include one or more touch sensors (e.g., resistive, capacitive,
ultrasonic or other acoustic, infrared or other optical, or
piezoelectric touch technology) as alternative or additional
ways for enabling users to provide input to their devices. As
electronic devices become more powerful and come equipped
with new sensors and other input elements, new approaches
can be developed to enable users to interact with their elec-
tronic devices.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present dis-
closure will be described with reference to the drawings, in
which:

FIGS. 1A and 1B illustrate an example of a user operating
an electronic device capable of detecting a tap or multiple taps
performed on the device for controlling the device in accor-
dance with an embodiment;

FIG. 2 illustrates an example of a process for configuring
an electronic device capable of detecting a tap or multiple taps
performed on the device for controlling the device in accor-
dance with an embodiment;

FIGS. 3A-3B illustrate examples of sensor data captured
by an electronic device capable of detecting a tap or multiple
taps performed on the device for controlling the device in
accordance with an embodiment;

FIGS. 4A-4B illustrate an example approach for extracting
values of features with respect to sensor data captured by an
electronic device capable of detecting a tap or multiple taps
performed on the device for controlling the device in accor-
dance with an embodiment;

FIG. 5 illustrates an example process for determining fea-
ture value vectors from sensor data captured by an electronic
device capable of detecting a tap or multiple taps performed
on the device for controlling the device in accordance with an
embodiment;

FIG. 6 illustrates an example process for detecting a tap or
multiple taps performed on an electronic device for control-
ling the device in accordance with an embodiment;

FIG. 7 illustrates an example of an electronic device that
can be used in accordance with various embodiments;

FIG. 8 illustrates an example configuration of components
of an electronic device such as that illustrated in FIG. 7; and

FIG. 9 illustrates an example environment in which various
embodiments can be implemented.

DETAILED DESCRIPTION

A conventional electronic device may include a touch-
screen on a front surface of the device and one or more
mechanical switches on the front surface or other surfaces of
the device to allow a user to manually provide input to the
device for controlling the device. It may also be desirable to
configure the electronic device to enable the user to provide
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input to the device in other ways without the expense of
incorporating additional touch sensors and/or mechanical
buttons on every surface of the device. In particular, it may be
advantageous for the electronic device to be capable of rec-
ognizing a single tap or multiple taps on various surfaces of
the device without the use of touch sensors or mechanical
switches. For example, a user can maintain an unobstructed
view of the touchscreen yet control the device by tapping on
a top, bottom, side, and/or back surface of the device. A
device capable of detecting one or more taps for controlling
the device can also facilitate single-handed operation of the
device. In addition, such an approach can be more immedi-
ately responsive to the user’s intended operation of the
device. For instance, the user can perform a selection or other
command via tap(s) using the same hand(s) holding the
device, which can enable the user to provide a more immedi-
ate input to the device than a touch gesture using a hand not
holding the device or a more complex touch gesture such as a
swipe.

Systems and methods in accordance with various embodi-
ments of the present disclosure overcome one or more of the
above-referenced and other deficiencies in conventional
approaches for detecting user input to an electronic device. In
various embodiments, sensor data is captured by a plurality of
sensors or other input elements, such as one or more inertial
sensors (e.g., accelerometers, gyroscopes, or a combination
thereof), microphones, proximity sensors, ambient light sen-
sors, and/or cameras, among others. The sensor data can be
analyzed using a machine-learned model to determine
whether a user has tapped the electronic device. Detection,
according to the model, of a single tap or multiple taps can be
interpreted by the electronic device as a selection or com-
mand by the user for controlling the device. In various
embodiments, machine learning includes an off-line phase
that involves collecting training data comprising samples of
sensor data for instances when users have tapped their elec-
tronic devices and instances when users have not tapped their
electronic devices. Feature values with respect to the sensor
data can be extracted for those instances corresponding to a
user tap and those instances not corresponding to a user tap,
and the feature values can be utilized to train one or more
machine-learned models to detect single taps or multiple taps
performed on an electronic device.

In some embodiments, a machine-learned model may be a
binary classifier that distinguishes between instances of taps
performed on the device and instances not corresponding to
taps performed on the device. Multiple binary classifiers can
be combined to detect one or more taps performed on the top,
bottom, sides, front, and/or back of a device. In other embodi-
ments, the machine-learned model may be a multiclass clas-
sifier that is capable of distinguishing among top taps, bottom
taps, side taps, front taps, and/or back taps performed on an
electronic device. A continuous evaluation may be performed
in some embodiments, whereby a sliding window of time is
used to attempt to detect tap events that occur within the
sliding window. Some tap actions function as a virtual button
on the device, whereby input to perform certain functions
through a tap is analogous to the pressing of a virtual button.
Some multiclass classifiers may be capable of recognizing
even more granular tap locations, such as top-left taps, top-
center taps, and top-right taps or northwest quadrant, north-
east quadrant, southwest quadrant, and southeast quadrant
back taps. The machine-learned model(s) can be utilized in
real time or substantially real time by a particular electronic
device to determine whether a user of that particular device
has tapped the device by analyzing the sensor data captured
by that particular device.
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Various other functions and advantages are described and
suggested below in accordance with the various embodi-
ments.

FIGS. 1A-1B illustrate an example of a user operating an
electronic device capable of detecting a tap or multiple taps of
the device as input for controlling the device in accordance
with an embodiment. In the example situation 100 of FIG.
1A, a user 102 can be seen viewing a touchscreen 106 of an
electronic device 104. Although a portable electronic device
(e.g., a smart phone, tablet, or e-book reader) is shown that
can be held in the user’s hands, it should be understood that
other types of electronic devices can utilize aspects of the
various embodiments as should be apparent in light of the
teachings and suggestions contained herein. In this example,
the electronic device 104 incorporates an inertial sensor 108,
such as a three-axis accelerometer, a three-axis gyroscope, or
a combination thereof. The three-axis accelerometer is
capable of measuring acceleration forces applied to the elec-
tronic device along the x- (lateral), y- (longitudinal), and z-
(vertical) axes (e.g., in G-force (g) or 9.81 m/s?). The three-
axis gyroscope is capable of measuring the device’s rate of
rotation around the x-, y-, and z-axes (e.g., in radians per
second). In some embodiments, an electronic device may
incorporate a nine-axis inertial measurement unit (IMU)
comprising a three-axis accelerometer, three-axis gyroscope,
and three-axis magnetometer. In other embodiments, a device
can include one or more accelerometers, gyroscopes, and/or
magnetometers (each being single-axis, two-axis, and/or or
three-axis) as discrete elements. In various embodiments, an
electronic device can also incorporate other sensors, includ-
ing one or more microphones, proximity sensors, ambient
light sensors, and/or cameras, among others, that can be used
in addition to accelerometers, gyroscopes, and magnetom-
eters for detecting one or more taps to the device by a user.

FIG. 1B illustrates a situation 150 of user 102 performing
atap 152 on a “back” surface of an electronic device 100. It
should be understood that, while the tap 152 is performed on
the “back” ofthe device, the user can also perform atap on the
“top,” “bottom,” “side,” or “front” of the device as well (or
instead). Further, directions such as “back,” “top,” “bottom,”
“side,” or “front” are used for purposes of explanation and are
not intended to require specific orientations unless otherwise
stated. In this example, respective sensor data for each axis of
the inertial sensor 108 (e.g., a three-axis accelerometer, a
three-axis gyroscope, or a combination thereof) can be cap-
tured during a first period of time that the user taps the back of
the device. A respective feature value vector can extracted
from each of the sensor data during the first period of time or
at a second period of time, and the feature value vectors are
evaluated according to a machine-learned model or classifier
that determines or classifies that the extracted feature value
vectors correspond to the user tapping the back of the elec-
tronic device. The back of the device can function as a “virtual
button,” and the detected tap can cause an action to be per-
formed by the electronic device, such as turning the device
off, turning audio on/off, dismissing notifications or screen
alerts, among other possibilities. As mentioned, in some
embodiments, other sensor data can also be captured from
microphones, proximity sensors, ambient light sensors, mag-
netometers, and/or cameras, etc. Additional feature value
vectors can also be extracted from these additional sensor
data, and these additional feature value vectors can also be
evaluated by the machine-learned model to determine
whether the user has tapped the device. Although the example
of FIG. 1B involves capturing sensor data from each axis of'a
three-axis accelerometer and/or a three-axis gyroscope, it
should be understood that other embodiments may capture
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inertial sensor data from only an accelerometer or only a
gyroscope. Further, inertial sensor data may be captured from
only a single axis or two axes of an accelerometer and/or
gyroscope.

FIG. 2 illustrates an example process 200 for configuring
an electronic device to be able to detect a tap of an electronic
device for controlling the device in accordance with an
embodiment. In this example, the process 200 includes an
off-line stage 210 that is performed to generate a machine-
learned model 220 that can be utilized by an electronic device
to determine whether the device has been tapped. It should be
understood that, for any process discussed herein, there can
be additional, fewer, or alternative steps performed in similar
or alternative orders, or in parallel, within the scope of the
various embodiments unless otherwise stated. The off-line
stage can begin with collecting training data 212 for deter-
mining instances of a tap of a device and instances that do not
correspond to the tap of the device. In an embodiment, the
training data comprises the readings of at least one acceler-
ometer (e.g., single-, two-, or three-axis), at least one gyro-
scope (e.g., single-, two-, or three-axis), or both, from several
user devices 204a-204n of a particular model. In other
embodiments, the training data can further comprise sensor
data gathered from one or more other sensors, including a
magnetometer, a microphone, a proximity sensor, an ambient
light sensor, and/or a camera, among other sensors or input
elements. The training data can be collected from one or more
users each using their respective electronic devices of the
same model to ensure that deviations in the training data are
not due to differences among device models such as dimen-
sional differences (e.g., length, width, height, weight, etc.) or
component differences (e.g., sensor model, sensor firmware,
CPU clock, etc.).

In some embodiments, the training data can include sensor
data captured when a user has tapped the top of the device, the
bottom of the device, the left side of the device, the right side
of'the device, the back of the device, or the front of the device.
The training data is also captured for when the device has not
been tapped by the user. The training data, whether corre-
sponding to user taps of the device or not corresponding to
user taps of the device, is captured under a variety of condi-
tions, such as while the device is lying flat on a surface, the
device is in a portrait orientation, the device is in a landscape
orientation, the device is held at various angles of tilt with
respect to a user, the device is kept in a user’s pocket, a user is
walking with the device, a user is running with the device, a
user is traveling upstairs or downstairs with the device, a user
is driving with the device, or a user is flying with the device,
among other situations.

During training data collection 212, the captured sensor
data can be manually classified according to a desired imple-
mentation for tap detection. In various embodiments, the
training data can be labeled according to a binary classifica-
tion scheme. For example, a device can be configured to
detect a user tap to the back of the device as input for con-
trolling the device. Instances of taps to the back of the device
are classified or labeled as positive examples. In certain of
these embodiments, taps to the top, bottom, side, and/or front
of the device can be included for deriving the machine-
learned model for back tap detection but these instances of
top, bottom, side, and/or front taps may be classified as nega-
tive examples of back taps. Additional binary classifiers can
be generated for other types of user taps. For instance, a same
or different device can be configured to detect a user tap to the
“absolute top” of the device by generating a machine-learned
model that is based on training data that includes classifica-
tions of instances of taps to the “absolute top” of the device as
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positive examples and classifications of “absolute bottom,”
“absolute left side”, “absolute right side,” front, and/or back
taps and instances not corresponding to taps as negative
examples. As used herein, “absolute top” refers to designa-
tion of one side of the device as the top of the device regard-
less of the orientation of the device with respect to the user,
and “absolute bottom,” “absolute left”, and “absolute right”
follow from the “absolute top” designation. As will be appre-
ciated by those of ordinary skill, a device can also be config-
ured to detect “absolute bottom,” “absolute left” side, “abso-
lute right” side, and front taps using separate binary classifiers
for each of these additional types of user taps.

Another example of a binary classification scheme is to
classify all types of taps—top, bottom, side, front, and/or
back—as positive examples of user taps, and to classify
instances not corresponding to taps as negative examples. In
this scheme, all taps will be identified simply as a tap, without
differentiating which device surface was tapped.

In certain situations, it may be desirable to not generate an
inertial tap event from a tap on the touchscreen of the device,
since this input is typically intended for the existing touch-
screen sensor system (e.g., capacitive or resistive sensor, and
existing system software). In these situations, touches on the
screen can be detected by the existing sensors and software. In
some embodiments, taps to the touchscreen can “override”
machine-learning based taps. An override can occur after a
touchscreen tap is detected, whereby machine-learning based
taps that may occur at the same time or substantially the same
time (e.g., within a few hundred milliseconds) are suppressed.
In other embodiments, a machine-learned model could be
trained to disambiguate between touchscreen taps and taps to
other surfaces of an electronic device by collecting training
data of instances of taps to the touchscreen and labeling such
instances as negative examples.

In other embodiments, the training data can be labeled
according to a multiclass classification scheme. That is,
instances of taps to the top of the device can be labeled as top
taps, instances of taps to the bottom of the device can be
labeled as bottom taps, instances of taps to the left side of the
device can be labeled as left taps, etc. A machine-learned
model derived from such training data may be capable of
differentiating among user taps at various locations of the
device (e.g., top, bottom, left side, right side, back, and/or
front). In some embodiments, the training data may be addi-
tionally or alternatively classified according to more granular
locations (e.g., top-left, top-center, top-right; top-left, top-
middle-left, top-middle-right, top-right; left-top, left-center,
left-bottom; back-northwest quadrant, back-northeast quad-
rant, back-southwest quadrant, back-southeast quadrant;
etc.). Various other classification schemes can be used as well
within the scope of various embodiments. A machine-learned
model generated from such training data may be designed to
analyze input data to classify the input data as corresponding
to these specific locations of a user tap or classify the input
data as not corresponding to a user tap.

After the training data has been captured and manually
labeled according to an appropriate classification scheme,
feature value vectors can be extracted from the captured sen-
sor data 214 using a feature pool 218. In an embodiment, the
feature pool 218 from which the feature value vectors are
determined comprise one-dimensional (1D) Haar-like fea-
tures. Haar-like features are based on Haar wavelets,
sequences of square-shaped functions of varying scales. Two-
dimensional (2D) Haar-like features are conventionally used
for recognizing objects within two-dimensional image data,
such as discussed in Viola, Paul, and Michael Jones. “Rapid
object detection using a boosted cascade of simple features.”
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In Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Con-
ference on, vol. 1, pp. 1-511. IEEE, 2001, which is incorpo-
rated herein by reference. Viola Jones object detection uses
simple rectangular Haar-like features at various scales and
positions to characterize an image. One of the basic patterns
for the 2D Haar-like features used by Viola Jones object
detection is a two-rectangle feature having the same size and
shape and being horizontally or vertically adjacent. The value
of the two-rectangle feature is the difference between the
respective sums of the pixels of the two rectangular regions.
Viola Jones object detection also defines a three-rectangle
feature whose value is the sum of the pixels in a center
rectangle subtracted from the respective sums of the pixels of
two outside rectangles, and a four-rectangle feature whose
value is the difference of the respective sums of pixel of
diagonal pairs of rectangles.

In various embodiments, Viola Jones object detection is
adapted for analyzing 1D sensor data signals using 1D Haar-
like features to characterize the 1D sensor data signals used
for tap detection. In an embodiment, one 1D Haar-like feature
utilized for tap detection may be a two-region feature having
regions of equal length and the basic pattern of {-1, 1}, and
another 1D Haar-like feature may be a three-region feature
having regions of equal length and the basic pattern of {-1, 1,
-1}, The value of the two-region Haar-like feature is the sum
of the sensor signal data of one region subtracted from the
sum of the sensor signal data of the other region, and the value
of the three-region Haar-like feature is the sum of the sensor
signal data of a center region subtracted from the respective
sums of the sensor signal data of two outer regions. Additional
Haar-like features can be derived from these basic patterns by
varying the length of the regions (e.g., {-1,-1,1,1};{-1, -1,
1,1,-1,-1}; {-1,-1,-1,1,1,1}; {-1,-1,-1,1, 1,1, -1, -1,
-1}; etc.), shifting the Haar-like features by various amounts
(e.g.,{0,-1,1};{0,-1,1,-1};{0,0,-1,1};{0,0,-1,1,-1};
etc.), or a combination thereof. In other embodiments, Haar-
like features may comprise other various patterns, including
those that may not have regions of equal length. For example,
another basic pattern for a Haar-like feature could be repre-
sented as {-1, -1, 1,1, 1, 1, =1}. This basic pattern can be
scaled and/or shifted for inclusion as part of a pool of features
to be used for tap detection.

In some embodiments, feature pool 218 can be statically
defined. In other embodiments, feature pool 218 can be
dynamically generated. An advantage of using Haar-like fea-
tures is the low calculation cost for determining the feature
vectors from the captured sensor data. Feature value vectors
derived from Haar-like features require only addition and
subtraction operations, and the values for these features can
be calculated in constant time. To rapidly compute the values
for the Haar-like features, an “integral buffer” can be com-
puted from the sensor data. An integral buffer is an adaptation
of Viola Jones object detection’s integral image, and is dis-
cussed in further detail elsewhere herein.

The next step of the off-line phase is generating a machine-
learned model from the training data 216 using a suitable
machine-learning algorithm from among decision trees, ran-
dom forest, boosting, support vector machines, neural net-
works, logistic regression, among other machine-learning
algorithms. Decision trees are trees that classify instances by
sorting them based on feature values. Each node in a decision
tree represents a feature in an instance to be classified, each
branch represents a possible value of the node, and each leaf
node represents a classification or decision. Generally, the
feature that best divides the training data would be the root
node of the tree, and higher-level nodes will typically divide
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the training data better than lower-level nodes. Examples of
decision-tree algorithms include Iterative Dichotomiser 3
(ID3); C4.5, which is the successor of ID3; C5.0/See5, which
is the successor to C4.5; and Classification and Regression
Tree (CART).

A random forest is a classifier comprising a combination of
decision trees in which each tree depends on the values of a
random vector sampled independently and with the same
distribution for all trees in the forest. A random forest can be
trained for some number of trees T by sampling N cases of the
training data at random with replacement to create a subset of
the training data; the subset can be about 66% of the total
training data. At each node, a number m of the features are
selected at random from the set of all features. The feature that
provides the best split is used to do a binary split on that node.
At the next node, another number m of the features are
selected at random and the process is repeated.

Boosting algorithms are based on the premise that a series
of “weak” classifiers (e.g., classifiers that may only accu-
rately predict an outcome a little more than half of the time)
can be combined to create a “strong” classifier (e.g., a clas-
sifier capable of predicting an outcome according to a desired
level of accuracy). An example of a boosting algorithm is
Adaptive boosting or AdaBoost, which is a machine learning
boosting algorithm which finds a highly accurate classifier
(i.e., low error rate) from a combination of many “weak”
classifiers (i.e., substantial error rate). Given a data set com-
prising examples that are within a class and not within the
class and weights based on the difficulty of classifying an
example and a weak set of classifiers, AdaBoost generates
and calls a new weak classifier in each of a series of rounds.
For each call, the distribution of weights is updated that
indicates the importance of examples in the data set for the
classification. On each round, the weights of each incorrectly
classified example are increased, and the weights of each
correctly classified example is decreased so the new classifier
focuses on the difficult examples (i.e., those examples have
not been correctly classified).

A support vector machine (SVM) is generally a binary
classifier. Given labeled training data comprising instances of
a first class or a second class, an SVM training algorithm
builds a model capable of assigning new instances to one of
the first class or the second class by finding an optimal hyper-
plane, i.e., a hyperplane that separates the training data
between the two classes and maximizes the gap or “margin”
between instances of the two classes. When a linear separator
cannot be found, the training data can be projected to a higher-
dimensional space using kernel techniques where the training
data effectively becomes linearly separable. Finding the
hyperplane can be formulated as a quadratic optimization
problem that can be solved by known techniques.

Neural networks are inspired by biological neural net-
works and consist of an interconnected group of functions or
classifiers that process information using a connectionist
approach. Neural networks change their structure during
training, such as by merging overlapping detections within
one network and training an arbitration network to combine
the results from different networks. Examples of neural net-
work algorithms include the multilayer neural network, the
autoassociative neural network, the probabilistic decision-
based neural network (PDBNN), and the sparse network of
winnows (SNoW).

Logistic regression is atype of probabilistic statistical clas-
sification model that can operate as a binary classifier. Prob-
abilities of the possible outcomes of a single trial are modeled
as a function of one or more independent variables or features
using a logistic function. This is an S-shaped function that can
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be used to fit data in various ways. Logistic regression mea-
sures the relationship between a classification and the one or
more independent variables or features by using probability
scores as the predicted values of the classification.

The process 200 for configuring an electronic device for
tap detection also includes a stage that occurs in real time or
substantially real time 250. This part of the process begins
with capturing of sensor data 252 by a particular electronic
device 204. As mentioned, the sensor data that can be cap-
tured includes inertial sensor data, such as for each axis of one
or more single-, two-, or three-axis accelerometers, gyro-
scopes, or a combination thereof. In other embodiments,
additional sensor data can also be obtained using one or more
other sensors or input elements, including magnetometer(s),
microphone(s), proximity sensor(s), ambient light sensors,
and/or cameras(s), among others. In various embodiments,
sensor data from one or more axes of the accelerometer and/or
gyroscope and/or from each of the additional sensors that
may be used for detecting a user tap can be stored in a
respective circular buffer such that the oldest data is overwrit-
ten by the newest captured sensor data. The real-time stage
can continue with extracting feature values from the captured
sensor data 254 using a set of features 218 common to those
used for extracting feature values from the training data 214.
The extracted feature values are evaluated according to the
machine-learned model 220 to determine whether the feature
values correspond to a tap of the device or do not correspond
to a tap of the device 256. When the device determines that a
user has tapped the device, including a single tap or multiple
taps, the tap(s) of the device can operate as an input gesture
that can cause an action to be performed by the device, such
as powering off the device, controlling audio, clearing noti-
fications or screen alerts, among other actions.

FIG. 3A-3B illustrate examples of sensor data captured by
an electronic device in accordance with an embodiment. The
capturing of the sensor data can be part of off-line training
data gathering 212 of FIG. 2 or part of real-time sensor data
capture 252 of FIG. 2. FIG. 3 A plots the accelerometer data
for when a user taps an electronic device twice on the back of
the device during a period of time. The accelerometer is a
three-axis accelerometer, including an x-, y-, and z-axis, that
is sampled at a rate of approximately 100 Hz. The electronic
device, in which the accelerometer is incorporated, is being
held by a user in a similar manner to that depicted in the
example situation 100 of FIG. 1A. That is, the device is being
held in portrait orientation with a slight tilt with respect to the
user such that the bottom of the device is closer to the user
than the top of the device. As a result, the accelerometer
reading is approximately O g along the x-axis and between
-0.5 and -1.0 g’s along the y-axis and z-axis when the device
is not being tapped. When the device is tapped, the acceler-
ometer reading approaches 0.5 g along the x-axis and -1.5g’s
along the z-axis. In this example, the accelerometer reading
does not change as significantly along the y-axis but there is
nonetheless a perceivable difference when the device is being
tapped and when the device is not being tapped. As discussed,
although sensor data is captured for each axis of the acceler-
ometer in the example of FIG. 3A, other embodiments may
instead capture sensor data from one or two axes of the
accelerometer or may not capture sensor data from an accel-
erometer.

FIG. 3B plots gyroscope data for when a user taps the same
electronic device as illustrated in FIG. 3 A twice on the back of
the device during the same period of time. The gyroscope is a
three-axis gyroscope, including an x-, y-, and z-axis, that is
also sampled at a rate of approximately 100 Hz. As can be
seen from FIG. 3B, the gyroscope reading is approximately 0
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rad/s along the x-, y-, and z-axes when the device has not been
tapped. In this example, when the device is tapped, the accel-
erometer reading approaches or exceeds 0.8 rad/s along the
x-axis, approaches 0.6 rad/s along the z-axis, and approaches
or exceeds —0.6 rad/s along the y-axis. In this example, the
peaks and valleys of the gyroscope readings appear to occur
20-30 samples after the peaks and valleys of the accelerom-
eter readings. It should be understood, however, that these
rates are merely examples and that these numbers may be on
the low side for a tap in accordance with various implemen-
tations. As discussed, although sensor data is captured for
each axis of the gyroscope in the example of FIG. 3B, other
embodiments may instead capture sensor data from one or
two axes of the gyroscope or may not capture sensor data
from a gyroscope.

FIG. 4A-4B illustrate an example approach for extracting
values of features with respect to sensor data in accordance
with an embodiment, such as the offline feature value extrac-
tion stage 214 of FIG. 2 or the real time feature value extrac-
tion stage 254 of FIG. 2. In FIG. 4A, a window 400 from
approximately the 40 reading to approximately the 80%
reading of the x-axis of the accelerometer data illustrated in
FIG. 3A is shown. As mentioned, the readings for the x-axis
of the accelerometer can be stored in a circular buffer
Vaccer x=L+ 55405 5415 5425 - - - Sgos - - - | Where's,, is the value
of'the signal at sample n. Feature value vectors are calculated
for each buffer of sensor data V, (e.g,, Vet s Vaccer 5
Vaceer_ Yayro_x Yayro s Y ayro_»» €1€.) Using a pool of Haar-
like features. In an embodiment, the pool of Haar-like fea-
tures comprises two- and three-region wavelets having
regions of equal length of various lengths and various
amounts of shift over a window of V. A two-region Haar-like
has a basic pattern of {~1, 1}. For example, a first two-region
Haar-like feature may be represented as {-1,-1,-1,1,1, 1}.
Another two-region Haar-like feature may have regions of the
same length as the first Haar-like feature but may be shifted by
a first amount and could be represented as {0, -1, -1, -1,1, 1,
1}. Yet another two-region Haar-like feature may have
regions of even greater length and be shifted by a second
amount, and, thus, could be represented as {0, 0, -1, -1, -1,
-1, 1,1, 1, 1}. A three-region Haar-like feature has a basic
pattern of {-1, 1, =1}. Other three-region Haar-like features
may have regions of different lengths (e.g., {-1, -1, 1, 1, -1,
-1};{-1,-1,-1,1,1,1,1, -1, -1, -1}; etc.) and/or different
amounts of shift (e.g., {0, -1, 1, -1};{0,0, -1, 1, -1} etc. A
value for a Haar-like feature with respect to a vector of sensor
data V can be calculated by obtaining the sum of the sensor
readings for those positions of the Haar-like feature having a
value of 1 and subtracting the sum of the sensor readings for
those positions of the Haar-like feature having a value of -1.
A feature value vector for each V can be computed by cal-
culating the value for each Haar-like feature of the feature
pool with respect to V. It should be understood that in various
embodiments the Haar-like features may vary in segment
length, such as where the first segment has a different length
from the other segments (e.g., {0,0, -1, -1,1,1, 1, 1, -1}).

Returning to the example of FIG. 4A, a Haar-like feature
402 is illustrated with respect to the window 400 of V__.; ..
Haar-like feature 402 may be representedas { ..., 0, -1, -1,
-1,1,1,1,0,... }. To obtain the value of this Haar-like feature
withrespecttoV,_ ., ., adotproduct of the Haar-like feature
and the sensor signal could be performed. That is, the sum of
each ofthe values ofthe first region 404 is subtracted from the
sum of each of the values of the second region 406 to obtain
the value of this Haar-like feature. In various embodiments,
an “integral buffer” I can be used to rapidly compute the
feature value vector for each buffer of sensor data V. Each
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element n of the integral buffer 1, is the summation of sensor
signal value at n and all prior elements to n, and the value of
an element n of the integral buffer I, can be defined as:

L (W=ZpeSt (Equation 1)

where s, is the sensor data value at a positionk=n in V. For
example, to calculate the value of the Haar-like feature 402
with respect to the window 400 of V,__; , without an integral
buffer would require six addition and subtraction operations,
including summing the values of the first region 404, s, s5o,
and s, and subtracting the values of the second region 406,
Ssss Ssg, and ss,. Instead of such an approach, the integral
buffer can be calculated for V,,_..; ... The integral buffer I,
could be calculated as [c+S55, C+S55+Ss55, CHSs5+S56+Ssy,
C+S55+556+S57+S55, CH+S55+S55+S5,+S55+550, CH+S55+S56+557+
S5e+550+540] for 55=n=60, where c is a constant that repre-
sents the sum of the sensor data further back in time. In an
embodiment, the value of ¢ is periodically subtracted from all
of'the elements of each buffer I to avoid numerical overflow
issues. This can occur infrequently to reduce the extra com-
putational work. The sum ofthe values of any region of V can
be simplified to a single subtraction as:

2, =L (m)-1,(k-1) (Equation 2)

The value of the Haar-like feature 402 can now be calcu-
lated in three operations using the integral buffer I :

[L(s60)—Lels57)]-[Le(s57)-L(554)]

FIG. 4B illustrates an example of extracting a value of a
three-region Haar-like feature with respect to a window 450
from approximately the 40” reading to approximately the
80™ reading of the x-axis of the accelerometer data depicted
in FIG. 3A. In this example, Haar-like feature 452 may be
represented as { . .., 0, -1, -1, -1, 1, 1, 1, -1, -1, -1,
0, ... }. To obtain the value of this Haar-like feature, the sum
of'each of the values of the first region 454 is subtracted from
the sum of each of the values of the second region 456 and the
sum of each of the values of the third region 458. Without the
use of the integral buffer, computing this Haar-like feature
would take as much as 9 addition and subtraction operations.
With the use of the integral buffer, calculating the value of the
Haar-like feature 452 with respect to V is reduced to
five operations:

accel_x

[ (s60)~L(s57)]- [L(s57)~L(554) ] [Ls(s54)~L(551)]-

FIG. 5 illustrates an example process 500 for determining
a feature value vector from sensor data captured by an elec-
tronic device capable of detecting a tap or multiple taps per-
formed on the device for controlling the device in accordance
with an embodiment. The process begins by obtaining a
respective vector of sensor data V502 for each of the sensors
used for tap detection. For illustrative purposes, let V,=[1, 2,
3,4,5,6,7,8]. Arespective integral buffer I, is then calculated
506 for each V. As discussed, each value n of integral buffer
1, is the sum of the sensor signal value at n and all elements
prior to n. Thus, for the above example V,, I, =[1, 1+2, 1+2+3,
14243+4, 142+3+4+45, 1+2+43+4+5+6, 1424344454647,
1+2+3+4+5+6+7+8]=[1, 3, 6, 10, 15,21, 28, 36]. A Haar-like
feature H,, is then obtained from a pool of Haar-like features
508, where y is the size of the feature pool. An example
two-region Haar-like feature H, can be defined as H,=[0, 0,
-1,-1,1,1, 0,0] where the first region comprises those values
of H, equal to 1, i.e. the 5 and 6 positions of H,, and the
second region comprises those values of H, equal to -1, i.e.
the 3" and 4" positions of H, . The value for H, with respect
to V, is computed 512 by subtracting the sum of the sensor
values corresponding to the first region from the sum of the
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sensor values corresponding to the second region. The inte-
gral buffer can be used to rapidly compute these sums. For
example, the sum of the first region can be calculated as
1,(6)-1,(4)=21-10~<11, and the sum of the second region can
be calculated as I, (4)-1,(2)=10-3=7. The value for H, with
respect to V_ is the difference of these sums, i.e., 11-7=4. A
feature value matrix or a set of feature value vectors I, can
beupdated 514 with the value for H, withrespectto V|, where
x is the number of sensors being used for tap detection and y
is the size of the Haar-like feature pool. In this instance, I,
would be updated with the value of 4.

Another example two-region Haar-like feature H, can be
defined as H,=[-1,-1,-1, -1, 1, 1, 1, 1] where the first region
comprises the 5% through 8% positions of H,, and the second
region comprises the 1 through 4% positions of H,. The value
for H, with respect to V can be computed using the same
approach discussed above, i.e., the value for H, with respect
10 V, equals [1,(8)-L(4))-L(#)-LO0)I-[(36-10)~(10-0)]=
[26-10]=16. The feature value matrix/set of feature value
vectors can be updated with the value for H, with respect to
V,,ie.,F, , would beupdated with the value of 16. Steps 508,
512, and 514 can be repeated until values for all of the Haar-
like features are determined. A determination 510 can be
made when all of the values for the feature pool are computed
to continue processing another vector of sensor data V,502. A
determination 504 can be made when all of the vectors of
sensor data V are processed, upon which the feature value
matrix/set of feature value vectors can be provided as input
for machine learning 516. For example, the feature value
matrix/set of feature value vectors can be used for training a
machine learning model, such as in the machine learning
model generation stage 216 of FIG. 2 or the feature value
matrix/set of feature value vectors can be evaluated according
to a machine-learned model to detect a tap, such as in the tap
detection stage 256 of FIG. 2.

In some embodiments, feature values can be computed on
demand to reduce the computational burden of feature value
extraction. That is, feature values are not calculated until
those feature values are to be evaluated by a machine-learned
model. For example, when the machine-learned model is
based on a random forest, feature values are only computed as
the random forest hits nodes where the random forest needs
those feature values.

FIG. 6 illustrates an example process 600 for detecting a
tap or multiple taps to an electronic device for controlling the
device in accordance with an embodiment. The process may
be initiated upon powering on of a display of a computing
device, such as if the process is performed as part of a home
screen application. In other embodiments, a user interface for
an application may be based on tap detection, and the process
can be initiated by starting up the application. The process
may begin by capturing a plurality of sensor data for the
electronic device 602. The sensor data can include respective
inertial sensor data from one or more axes of one or more
inertial sensors of the device. In some embodiments, the
sensor data can also include respective magnetometer data
from each axis of a magnetometer of the device, respective
audio data from one or more microphones of the device,
respective proximity data from one or more proximity sensors
of the device, respective light level data from one or more
ambient light sensors of the device, and/or respective image
data from one or more cameras of the device. In some
embodiments, the sensor readings can be interpolated to pro-
duce sensor readings at a fixed time interval. For example,
although an accelerometer and a gyroscope may be sampled
at a same interval (e.g., 100 Hz), one of the accelerometer or
the gyroscope may correspond to a different offset from the
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other. As another example, the sampling rate of individual
sensors may average out to a desired rate but can be inexact,
and thus sensor readings can have slightly different times-
tamps. Thus, in these situations, the sensor readings can be
interpolated to account for such differences. Approaches for
interpolating the sensor readings include nearest neighbor
interpolation, linear interpolation, quadratic interpolation, or
spline interpolation methods, among others. In other embodi-
ments, the sensor readings are not interpolated and the sensor
readings are utilized as they are obtained such that respective
sensor readings may not correspond to a uniform time inter-
val. Interpolation may be necessary in some embodiments
when signals are sampled at the same rate but with different
offsets. A simple example of this is when the accelerometer is
sampled at 100 ms intervals at 0, 100, 200, 300 ms, and the
gyroscope is sampled at the same interval but a different
offset, such as 50, 150, 250, 350 ms. Sampling can be per-
formed by many different methods, all fairly common: near-
est neighbor interpolation, linear interpolation, quadratic
interpolation, or any Variety of spline interpolation methods.

After the plurality of sensor data is captured, each of the
sensor data can be stored in a separate buffer 604. In an
embodiment, a respective circular buffer V of fixed length is
used for storing each of the plurality of sensor data. For
example, the sensor data from each axis of the accelerometer
can be stored in V, Vccer y» and 'V the sensor
data from each axis of the gyroscope can be stored in
v and V.

gyro_y gyro_z

accel _x° accel _z>

ngroixs
the sensor data from each axis of the
magnetometer can be stored in V.0 o Viagner ,» and
V iagner_»» €t€. Respective feature value vectors for each of
the sensors can then be determined 606 using the respective
buffer corresponding to a particular sensor and the feature
pool. In various embodiments, integral buffers I, can be uti-
lized for quickly computing the feature vectors. As discussed,
integral buffer I for a buffer of sensor data V can be gener-
ated by feeding each sensor value s, to a fixed-length cumu-
lative buffer 1., where each element n in the buffer I, is the
summation of n and all of the elements prior to n. The integral
buffer I for a buffer of sensor data V  can significantly reduce
the calculation cost for computing the feature vector for V
because the sum of a region of V from k to n is the difference
between I (n) and [ ,(k-1). In various embodiments, the sam-
pling rate for capturing the sensor data is 100 Hz. In some
embodiments, I is continually updated as new sensor read-
ings come in. In some embodiments, feature value extraction
606 can also occur at a same interval as the capturing of the
sensor data. In other embodiments, the sensor data and inte-
gral buffer can be buffered for a period of time before feature
vectors are calculated.

The process 600 continues by evaluating the respective
feature vectors for each of the plurality of the sensor data
according to a machine-learned model 608. The machine-
learned model can be based on one of several supervised
learning techniques, including decision trees, random forest,
boosting, support vector machines, neural networks, logistic
regression, among others. The respective feature vectors for
each of the plurality of sensor are provided as input to the
machine-learned model, and the machine-learned model
classifies the respective feature vectors as corresponding to a
tap of the device or not corresponding to a tap of the device
610. If the respective feature vectors are determined to not
correspond to a tap of the device, the process 600 can be
re-initiated by capturing new sensor data 602. If the respec-
tive feature vectors are determined to correspond to a tap of
the device, the tap can be interpreted as an input gesture and
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an action can be performed 612, such as powering off the
device, controlling audio, clearing notifications or screen
alerts, among other actions.

In some embodiments, feature value extraction and classi-
fication by the machine-learned model occur at a similar rate
as the rate at which sensor data is captured (e.g., 100 Hz). In
other embodiments, feature extraction and classification are
performed at a less frequent rate for power-saving purposes.

In various embodiments, multiple taps of the device can be
detected by recognizing single taps that occur in close tem-
poral proximity or that occur within a threshold of time of
each other. For example, a pair of single taps that occur within
the threshold of time can be detected as a double tap. A similar
approach can be extended to other tap patterns, such as triple
taps, quadruple taps, etc.

FIG. 7 illustrates an example electronic device 700 that can
be used to perform approaches described in accordance with
various embodiments. The electronic device includes an iner-
tial sensor 708, such as an accelerometer, a gyroscope, or a
combination thereof, that can be used to detect motion and/or
orientation of the device, which can in turn be analyzed to
determine whether the device has received a single tap or
multiple taps for controlling the device in accordance with
various embodiments. The electronic device can also include
one or more microphones 710 that are configured to run
concurrently with the inertial sensor. Feature vectors can be
extracted from the sound signals captured by the one or more
microphones, and these feature vectors can be utilized as
additional parameters for machine-learning.

The electronic device can also include one or more cameras
712 for detecting a portion of the user (e.g., user’s face and/or
head) and/or something associated with the user (e.g., some-
thing in the user’s hand, that the user is wearing, etc.). Insome
embodiments, face or head detection can be used as an addi-
tional cue to determine whether the user has intended to tap
the device to control the device. For example, the electronic
device may be configured to recognize taps as input for con-
trolling the device only when the user is actively operating the
device as opposed to when the device is located in one of the
user’s pockets, the user’s bag, or some other location away
from the user. Face or head detection can be utilized as an
indication that the user is actively operating the device.
Approaches for combining face and/or head detection with
tap detection are discussed in co-pending U.S. patent appli-
cation Ser. No. 14/307,470, filed Jun. 17, 2014, entitled
“Detecting Tap-Based User Input on a Mobile Device,” which
is incorporated by reference herein.

In some embodiments, an electronic device can include
one or more regions on various surfaces of the device indi-
cating where the user may tap on the device such that the
device is more likely to detect the tap as input for controlling
the device. In this example, the device 700 is capable of
differentiating among back taps to a northwest quadrant,
northeast quadrant, southwest quadrant, and southeast quad-
rant of the device. To facilitate tap detection at these various
quadrants, tactile cues or indicators 720, 722, 724, and 726
may be provided approximately at the center of the northwest
quadrant, northeast quadrant, southwest quadrant, and south-
east quadrant, respectively. Tactile cues may have unique
sensor signatures, such as a pattern of raised bumps, lines, or
ridges, that create a unique pattern when the user drags a
finger across the surface. The unique pattern can direct a user
to tap the surface of the device at these locations so that the
sensor data captured when the user taps these locations more
closely matches training data captured by other users tapping
at these locations. In addition, touching or tapping the raised
bumps or lines may generate unique sensor data, which can
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further facilitate recognition of user input to these locations
using a machine-learning approach. Although, the tactile cues
or indicators are disposed on the back surface of the device, it
should be understood that these cues or indicators can also be
disposed at various other locations, including the top, bottom,
sides, and front of the device in various embodiments. In
some embodiments, visual indicators, such as stickers or
utilization of a different color from the rest of the surface, can
be used in addition or alternatively to tactical cues.

FIG. 8 illustrates a logical arrangement of a set of general
components of an example electronic device 800 such as the
device 700 described with respect to FIG. 7. In this example,
the device includes a processor 802 for executing instructions
that can be stored in a memory component 804. As would be
apparent to one of ordinary skill in the art, the memory com-
ponent can include many types of memory, data storage, or
non-transitory computer-readable storage media, such as a
first data storage for program instructions for execution by the
processor 802, a separate storage for images or data, a remov-
able memory for sharing information with other devices, etc.
The device typically will include some type of display ele-
ment 806, such as a touchscreen, electronic ink (e-ink),
organic light emitting diode (OLED), liquid crystal display
(LCD), etc., although devices such as portable media players
might convey information via other means, such as through
audio speakers. In at least some embodiments, the display
screen provides for touch or swipe-based input using, for
example, capacitive or resistive touch technology.

The device 800 also can include one or more orientation
and/or motion sensors 808. Such sensor(s) can include an
accelerometer or gyroscope operable to detect an orientation
and/or change in orientation, or an electronic or digital com-
pass, which can indicate a direction in which the device is
determined to be facing. The mechanism(s) also (or alterna-
tively) can include or comprise a global positioning system
(GPS) or similar positioning element operable to determine
relative coordinates for a position of the electronic device, as
well as information about relatively large movements of the
device. The device can include other elements as well, such as
may enable location determinations through triangulation or
another such approach. These mechanisms can communicate
with the processor 802, whereby the device can perform any
of'a number of actions described or suggested herein.

The example device can include at least one audio compo-
nent 810, such as amono or stereo microphone or microphone
array, operable to capture audio information from at least one
primary direction. A microphone can be a uni- or omni-
directional microphone as known for such devices. The
device in many embodiments will also include one or more
cameras or image sensors 812 for capturing image or video
content. A camera can include, or be based at least in part
upon any appropriate technology, such as a CCD or CMOS
image sensor having a sufficient resolution, focal range,
viewable area, to capture an image of the user when the user
is operating the device. An image sensor can include a camera
or infrared sensor that is able to image projected images or
other objects in the vicinity of the device. Methods for cap-
turing images or video using a camera with an electronic
device are well known in the art and will not be discussed
herein in detail. It should be understood that image capture
can be performed using a single image, multiple images,
periodic imaging, continuous image capturing, image
streaming, etc. Further, adevice can include the ability to start
and/or stop image capture, such as when receiving a com-
mand from a user, application, or other device.

The electronic device 800 includes at least one capacitive
component or other proximity sensor, which can be part of, or
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separate from, the display assembly. In at least some embodi-
ments the proximity sensor can take the form of a capacitive
touch sensor capable of detecting the proximity of a finger or
other such object. The electronic device also includes various
power components 814 known in the art for providing power
to an electronic device, which can include capacitive charging
elements for use with a power pad or similar device. The
electronic device can include one or more communication
elements or networking sub-systems 816, such as a Blue-
tooth, RF, wired, or wireless communication system. The
device in many embodiments can communicate with a net-
work, such as the Internet, and may be able to communicate
with other such devices. In some embodiments the device can
include at least one additional input element 818 able to
receive conventional input from a user. This conventional
input can include, for example, a push button, touch pad,
touchscreen, wheel, joystick, keyboard, mouse, keypad, or
any other such component or element whereby a user can
input a command to the device. In some embodiments, how-
ever, such a device might not include any buttons at all, and
might be controlled only through a combination of visual and
audio commands, such that a user can control the device
without having to be in contact with the device.

In some embodiments, the device 800 can include the
ability to activate and/or deactivate detection and/or com-
mand modes, such as when receiving a command from a user
or an application, or retrying to determine an audio input or
video input, etc. For example, a device might not attempt to
detect or communicate with devices when there is not a user
in the room. If a proximity sensor of the device, such as an IR
sensor, detects a user entering the room, for instance, the
device can activate a detection or control mode such that the
device can be ready when needed by the user, but conserve
power and resources when a user is not nearby.

In some embodiments, the electronic device 800 may
include a light-detecting element that is able to determine
whether the device is exposed to ambient light or is in relative
or complete darkness. Such an element can be beneficial in a
number of ways. For example, the light-detecting element can
be used to determine when a user is holding the device up to
the user’s face (causing the light-detecting element to be
substantially shielded from the ambient light), which can
trigger an action such as the display element to temporarily
shut off (since the user cannot see the display element while
holding the device to the user’s ear). The light-detecting
element could be used in conjunction with information from
other elements to adjust the functionality of the device. For
example, if the device is unable to detect a user’s view loca-
tion and a user is not holding the device but the device is
exposed to ambient light, the device might determine that it
has likely been set down by the user and might turn off the
display element and disable certain functionality. If the
device is unable to detect a user’s view location, a user is not
holding the device and the device is further not exposed to
ambient light, the device might determine that the device has
been placed in a bag or other compartment that is likely
inaccessible to the user and thus might turn off or disable
additional features that might otherwise have been available.
In some embodiments, a user must either be looking at the
device, holding the device or have the device out in the light
in order to activate certain functionality of the device. In other
embodiments, the device may include a display element that
can operate in different modes, such as reflective (for bright
situations) and emissive (for dark situations). Based on the
detected light, the device may change modes.

In some embodiments, the device 800 can disable features
for reasons substantially unrelated to power savings. For
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example, the device can use voice recognition to determine
people near the device, such as children, and can disable or
enable features, such as Internet access or parental controls,
based thereon. Further, the device can analyze recorded noise
to attempt to determine an environment, such as whether the
deviceisinacaroronaplane, and that determination can help
to decide which features to enable/disable or which actions
are taken based upon other inputs. If speech or voice recog-
nition is used, words can be used as input, either directly
spoken to the device or indirectly as picked up through con-
versation. For example, if the device determines that it is in a
car, facing the user and detects a word such as “hungry” or
“eat,” then the device might turn on the display element and
display information for nearby restaurants, etc. A user can
have the option of turning off voice recording and conversa-
tion monitoring for privacy and other such purposes.

In some of the above examples, the actions taken by the
device relate to deactivating certain functionality for pur-
poses of reducing power consumption. It should be under-
stood, however, that actions can correspond to other functions
that can adjust similar and other potential issues with use of
the device. For example, certain functions, such as requesting
Web page content, searching for content on a hard drive and
opening various applications, can take a certain amount of
time to complete. For devices with limited resources, or that
have heavy usage, a number of such operations occurring at
the same time can cause the device to slow down or even lock
up, which can lead to inefficiencies, degrade the user experi-
ence and potentially use more power. In order to address at
least some of these and other such issues, approaches in
accordance with various embodiments can also utilize infor-
mation such as user gaze direction to activate resources that
are likely to be used in order to spread out the need for
processing capacity, memory space and other such resources.

In some embodiments, the device can have sufficient pro-
cessing capability, and the camera and associated image
analysis algorithm(s) may be sensitive enough to distinguish
between the motion of the device, motion of a user’s head,
motion of the user’s eyes and other such motions, based onthe
captured images alone. In other embodiments, such as where
it may be desirable for an image process to utilize a fairly
simple camera and image analysis approach, it can be desir-
able to include at least one orientation determining element
that is able to determine a current orientation of the device. In
one example, the one or more orientation and/or motion sen-
sors may comprise a single- or multi-axis accelerometer that
is able to detect factors such as three-dimensional position of
the device and the magnitude and direction of movement of
the device, as well as vibration, shock, etc. Methods for using
elements such as accelerometers to determine orientation or
movement of a device are also known in the art and will not be
discussed herein in detail. Other elements for detecting ori-
entation and/or movement can be used as well within the
scope of various embodiments for use as the orientation deter-
mining element. When the input from an accelerometer or
similar element is used along with the input from the camera,
the relative movement can be more accurately interpreted,
allowing for a more precise input and/or aless complex image
analysis algorithm.

When using a camera of the electronic device to detect
motion of the device and/or user, for example, the electronic
device can use the background in the images to determine
movement. For example, if a user holds the device at a fixed
orientation (e.g. distance, angle, etc.) to the user and the user
changes orientation to the surrounding environment, analyz-
ing an image of the user alone will not result in detecting a
change in an orientation of the device. Rather, in some
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embodiments, the electronic device can still detect movement
of the device by recognizing the changes in the background
imagery behind the user. So, for example, if an object (e.g., a
window, picture, tree, bush, building, car, etc.) moves to the
left or right in the image, the device can determine that the
device has changed orientation, even though the orientation
of'the device with respect to the user has not changed. In other
embodiments, the device may detect that the user has moved
with respect to the device and adjust accordingly. For
example, if the user tilts his head to the left or right with
respect to the device, the content rendered on the display
element may likewise tilt to keep the content in orientation
with the user.

As discussed, different approaches can be implemented in
various environments in accordance with the described
embodiments. For example, FIG. 9 illustrates an example of
an environment 900 for implementing aspects in accordance
with various embodiments. As will be appreciated, although a
Web-based environment is used for purposes of explanation,
different environments may be used, as appropriate, to imple-
ment various embodiments. The system includes an elec-
tronic client device 902, which can include any appropriate
device operable to send and receive requests, messages or
information over an appropriate network 904 and convey
information back to a user of the device. Examples of such
client devices include personal computers, cell phones, hand-
held messaging devices, laptop computers, set-top boxes,
personal data assistants, electronic book readers and the like.
The network can include any appropriate network, including
an intranet, the Internet, a cellular network, a local area net-
work or any other such network or combination thereof. Com-
ponents used for such a system can depend at least in part
upon the type of network and/or environment selected. Pro-
tocols and components for communicating via such a net-
work are well known and will not be discussed herein in
detail. Communication over the network can be enabled via
wired or wireless connections and combinations thereof. In
this example, the network includes the Internet, as the envi-
ronment includes a Web server 906 for receiving requests and
serving content in response thereto, although for other net-
works, an alternative device serving a similar purpose could
be used, as would be apparent to one of ordinary skill in the
art.

The illustrative environment includes at least one applica-
tion server 908 and a data store 910. It should be understood
that there can be several application servers, layers or other
elements, processes or components, which may be chained or
otherwise configured, which can interact to perform tasks
such as obtaining data from an appropriate data store. As used
herein, the term “data store” refers to any device or combi-
nation of devices capable of storing, accessing and retrieving
data, which may include any combination and number of data
servers, databases, data storage devices and data storage
media, in any standard, distributed or clustered environment.
The application server 908 can include any appropriate hard-
ware and software for integrating with the data store 910 as
needed to execute aspects of one or more applications for the
client device and handling a majority of the data access and
business logic for an application. The application server pro-
vides access control services in cooperation with the data
store and is able to generate content such as text, graphics,
audio and/or video to be transferred to the user, which may be
served to the user by the Web server 906 in the form of HTML,
XML or another appropriate structured language in this
example. The handling of all requests and responses, as well
as the delivery of content between the client device 902 and
the application server 908, can be handled by the Web server
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906. It should be understood that the Web and application
servers are not required and are merely example components,
as structured code discussed herein can be executed on any
appropriate device or host machine as discussed elsewhere
herein.

The data store 910 can include several separate data tables,
databases or other data storage mechanisms and media for
storing data relating to a particular aspect. For example, the
data store illustrated includes mechanisms for storing content
(e.g., production data) 912 and user information 916, which
can be used to serve content for the production side. The data
store is also shown to include a mechanism for storing log or
session data 914. It should be understood that there can be
many other aspects that may need to be stored in the data
store, such as page image information and access rights infor-
mation, which can be stored in any of the above listed mecha-
nisms as appropriate or in additional mechanisms in the data
store 910. The data store 910 is operable, through logic asso-
ciated therewith, to receive instructions from the application
server 908 and obtain, update or otherwise process data in
response thereto. In one example, a user might submit a
search request for a certain type of item. In this case, the data
store might access the user information to verify the identity
of the user and can access the catalog detail information to
obtain information about items of that type. The information
can then be returned to the user, such as in a results listing on
a Web page that the user is able to view via a browser on the
user device 902. Information for a particular item of interest
can be viewed in a dedicated page or window of the browser.

Each server typically will include an operating system that
provides executable program instructions for the general
administration and operation of that server and typically will
include computer-readable medium storing instructions that,
when executed by a processor of the server, allow the server
to perform its intended functions. Suitable implementations
for the operating system and general functionality of the
servers are known or commercially available and are readily
implemented by persons having ordinary skill in the art, par-
ticularly in light of the disclosure herein.

The environment in one embodiment is a distributed com-
puting environment utilizing several computer systems and
components that are interconnected via communication links,
using one or more computer networks or direct connections.
However, it will be appreciated by those of ordinary skill in
the art that such a system could operate equally well in a
system having fewer or a greater number of components than
are illustrated in FIG. 9. Thus, the depiction of the system 900
in FIG. 9 should be taken as being illustrative in nature and not
limiting to the scope of the disclosure.

The various embodiments can be further implemented in a
wide variety of operating environments, which in some cases
can include one or more user computers or computing devices
which can be used to operate any of a number of applications.
User or client devices can include any of a number of general
purpose personal computers, such as desktop or laptop com-
puters running a standard operating system, as well as cellu-
lar, wireless and handheld devices running mobile software
and capable of supporting a number of networking and mes-
saging protocols. Such a system can also include a number of
workstations running any of a variety of commercially-avail-
able operating systems and other known applications for pur-
poses such as development and database management. These
devices can also include other electronic devices, such as
dummy terminals, thin-clients, gaming systems and other
devices capable of communicating via a network.

Most embodiments utilize at least one network that would
be familiar to those skilled in the art for supporting commu-
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nications using any of a variety of commercially-available
protocols, such as TCP/IP, OSI, FTP, UPnP, NFS, CIFS and
AppleTalk. The network can be, for example, a local area
network, a wide-area network, a virtual private network, the
Internet, an intranet, an extranet, a public switched telephone
network, an infrared network, a wireless network and any
combination thereof.

In embodiments utilizing a Web server, the Web server can
run any of a variety of server or mid-tier applications, includ-
ing HTTP servers, FTP servers, CGI servers, data servers,
Java servers and business application servers. The server(s)
may also be capable of executing programs or scripts in
response requests from user devices, such as by executing one
or more Web applications that may be implemented as one or
more scripts or programs written in any programming lan-
guage, such as Java®, C, C# or C++ or any scripting language,
such as Perl, Python or TCL, as well as combinations thereof.
The server(s) may also include database servers, including
without limitation those commercially available from
Oracle®, Microsoft®, Sybase® and IBM®.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the informa-
tion may reside in a storage-area network (SAN) familiar to
those skilled in the art. Similarly, any necessary files for
performing the functions attributed to the computers, servers
or other network devices may be stored locally and/or
remotely, as appropriate. Where a system includes comput-
erized devices, each such device can include hardware ele-
ments that may be electrically coupled via a bus, the elements
including, for example, at least one central processing unit
(CPU), at least one input device (e.g., a mouse, keyboard,
controller, touch-sensitive display element or keypad) and at
least one output device (e.g., a display device, printer or
speaker). Such a system may also include one or more storage
devices, such as disk drives, optical storage devices and solid-
state storage devices such as random access memory (RAM)
or read-only memory (ROM), as well as removable media
devices, memory cards, flash cards, etc.

Such devices can also include a computer-readable storage
media reader, a communications device (e.g., a modem, a
network card (wireless or wired), an infrared communication
device) and working memory as described above. The com-
puter-readable storage media reader can be connected with,
or configured to receive, a computer-readable storage
medium representing remote, local, fixed and/or removable
storage devices as well as storage media for temporarily
and/or more permanently containing, storing, transmitting
and retrieving computer-readable information. The system
and various devices also typically will include a number of
software applications, modules, services or other elements
located within at least one working memory device, including
an operating system and application programs such as a client
application or Web browser. It should be appreciated that
alternate embodiments may have numerous variations from
that described above. For example, customized hardware
might also be used and/or particular elements might be imple-
mented in hardware, software (including portable software,
such as applets) or both. Further, connection to other com-
puting devices such as network input/output devices may be
employed.

Storage media and computer readable media for containing
code, or portions of code, can include any appropriate media
known or used in the art, including storage media and com-
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munication media, such as but not limited to volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage and/or trans-
mission of information such as computer readable instruc-
tions, data structures, program modules or other data,
including RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices or
any other medium which can be used to store the desired
information and which can be accessed by a system device.
Based on the disclosure and teachings provided herein, a
person of ordinary skill in the art will appreciate other ways
and/or methods to implement the various embodiments.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

What is claimed is:
1. A computer-implemented method for detecting a tap as
input for an electronic device, comprising:
capturing a sensor data vector corresponding to a one-
dimensional signal from at least one of an accelerometer
Or a gyroscope;
calculating an integral buffer corresponding to the sensor
data vector by summing: (a) a sensor signal value at each
position in the sensor data vector corresponding to the
position of the integral buffer, and (b) sensor signal
values, prior to the position, in the sensor data vector;
calculating a feature value vector using: (a) the integral
buffer, and (b) a plurality of one-dimensional Haar-like
features comprising sequences of numbers of equal
length including a first sequence of one or more negative
ones and a second sequence of one or more positive
ones;
for a decision tree classifier of a random forest classifier
that is trained to detect that the tap has been performed
on a back surface of the electronic device, evaluating a
respective subset of feature values of the feature value
vector with respect to the decision tree classifier to
obtain a respective classification; and
determining that the tap has been performed on the back
surface of the electronic device based on the respective
classification obtained from each decision tree classifier
of the random forest classifier.
2. The computer-implemented method of claim 1, further
comprising:
determining a first period of time corresponding to when
the tap has been performed on the back surface of the
electronic device;
determining that a second tap has been performed on the
back surface of the electronic device and a second period
of time corresponding to when the second tap has been
performed; and
determining that a double tap has been performed on the
back surface of the electronic device by analyzing the
first period of the time and the second period of time with
respect to a time threshold.
3. The computer-implemented method of claim 1, further
comprising:
capturing training data from one or more electronic
devices, the training data comprising sensor data from
each of the one or more electronic devices, the training
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data corresponding to multiple instances of one or more
back surfaces of the one or more electronic devices
being tapped;

calculating a plurality of feature value vectors using the

training data and the plurality of one-dimensional Haar-
like features; and

generating each decision tree classifier of the random for-

est classifier using the plurality of feature value vectors.

4. The computer-implemented method of claim 1, wherein
capturing the sensor data vector and calculating the integral
buffer occur at a first rate, and calculating the feature value
vector and evaluating the feature value vector with respect to
each decision tree classifier occur at a second rate that is less
frequent than the first rate.

5. A computer-implemented method, comprising:

capturing a sensor data vector using an inertial sensor, the

sensor data vector corresponding to a one-dimensional
signal of the inertial sensor;

determining a feature value vector based at least in part

upon the sensor data vector and a plurality of one-di-
mensional features;

evaluating at least one portion of the feature value vector

using a machine-learned model that is trained to analyze
the feature value vector to determine whether the feature
value vector corresponds to one or more taps being per-
formed on an electronic device; and

determining that a tap has been performed on the electronic

device based at least in part upon evaluating the at least
one portion of the feature value vector using the
machine-learned model.
6. The computer-implemented method of claim 5, wherein
calculating the feature value vector includes:
calculating an integral buffer corresponding to the sensor
data vector by summing: (a) a sensor signal value at each
position in the sensor data vector corresponding to the
position of the integral buffer, and (b) sensor signal
values, prior to the position, in the sensor data vector,

wherein the feature value vector is calculated using the
integral buffer and the plurality of one-dimensional fea-
ture.

7. The computer-implemented method of claim 5, wherein
each of the plurality of one-dimensional features comprise
Haar-like features each including a plurality of sequences of
numbers of equal length including a first sequence of one or
more negative ones and a second sequence of one or more
ones.

8. The computer-implemented method of claim 7, wherein
the plurality of one-dimensional features comprises a one-
dimensional Haar-like feature further including a third
sequence of one or more negative ones.

9. The computer-implemented method of claim 5, wherein
determining that the tap has been performed on the electronic
device includes:

determining that the tap has been performed on one of a top

surface, a bottom surface, a side surface, a front surface,
or a back surface of the electronic device.

10. The computer-implemented method of claim 9,
wherein the machine-learned model is a multiclass classifier.

11. The computer-implemented method of claim 9,
wherein the machine-learned model is a binary classifier and
determining that the tap has been performed on the one of the
top surface, the bottom surface, the side surface, the front
surface, or the back surface of the electronic device includes:

evaluating the at least one portion of the feature value

vector using one or more additional machine-learned
models.
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12. The computer-implemented method of claim 5, further
comprising:
determining a first period of time corresponding to when
the tap has been performed on the electronic device;

determining that a second tap has been performed on the
electronic device and a second period of time corre-
sponding to when the second tap has been performed;
and

determining that a double tap has been performed on the

electronic device by analyzing the first period of the time
and the second period of time with respect to a time
threshold.

13. The computer-implemented method of claim 5, further
comprising:

capturing training data from one or more electronic

devices, the training data comprising sensor data from
each of the one or more electronic devices, the training
data corresponding to multiple instances of the one or
more electronic devices being tapped;

calculating a plurality of feature value vectors using the

training data and the plurality of one-dimensional fea-
tures; and

generating the machine-learned model based at least in part

upon the plurality of feature value vectors and a
machine-learning algorithm, the machine-learning
algorithm being based at least in part upon one of a
decision tree, a random forest, boosting, a support vector
machine, a neural network, or logistic regression.

14. The computer-implemented method of claim 5, further
comprising:

capturing at least one second sensor data vector using at

least one of a magnetometer, a microphone, a proximity
sensor, an ambient light sensor, or a camera; and
determining at least one second feature value vector based
at least in part upon the at least one second sensor data
vector and the plurality of one-dimensional features,
wherein determining that the tap has been performed on the
electronic device is further based at least in part upon
evaluating at least one portion of the at least one second
sensor data vector using the machine-learned model.

15. The computer-implemented method of claim 14, fur-
ther comprising:

interpolating the sensor data vector and the at least one

second sensor data vector according to a fixed time
interval.

16. The computer-implemented method of claim 5,
wherein capturing the sensor data vector occurs at a first rate,
and determining the feature value vector and evaluating the at
least one portion of the feature value vector using the
machine-learned model occurs at a second rate that is less
frequent than the first rate.

17. An electronic device, comprising:

a processor;

an inertial sensor; and

memory including instructions that, upon being executed

by the processor, cause the electronic device to:

obtain a sensor data vector using the inertial sensor, the
sensor data vector corresponding to a one-dimen-
sional signal of the inertial sensor;

determine a feature value vector based at least in part
upon the sensor data vector and a plurality of one-
dimensional features;

determine at least one portion of the feature value vector
using a machine-learned model that is trained to ana-
lyze the feature value vector to determine whether the
feature value vector corresponds to one or more taps
being performed on the electronic device; and



US 9,235,278 B1

23

determine that a tap has been performed on the elec-
tronic device based at least in part upon evaluating the
at least one portion of feature value vector using the
machine-learned model.

18. The electronic device of claim 17, further comprising at
least one of a magnetometer, a microphone, a proximity sen-
sor, an ambient light sensor, or a camera, wherein the instruc-
tions, upon being executed, further cause the electronic
device to:

capture at least one second sensor data vector using the at
least one of the magnetometer, the microphone, the
proximity sensor, the ambient light sensor, or the cam-
era; and

determine at least one second feature value vector based at
least in part upon the at least one second sensor data
vector and the plurality of one-dimensional features,

wherein determining that the tap has been performed on the
electronic device is further based at least in part upon
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evaluating at least one portion of the at least one second
sensor data vector using the machine-learned model.
19. The electronic device of claim 17, further comprising
one or more tactile indicators for indicating where to tap on
the electronic device.
20. The electronic device of claim 17, wherein the instruc-
tions, upon being executed, further cause the electronic
device to:
determine a first period of time corresponding to when the
tap has been performed on the electronic device;

determine that a second tap has been performed on the
electronic device and a second period of time corre-
sponding to when the second tap has been performed;
and

determine that a double tap has been performed on the

electronic device by analyzing the first period of the time
and the second period of time with respect to a time
threshold.



